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Abstract
Ordinary differential equations with superposition formulae related to parabolic
subgroups of SL(n) are explicitly found. It is shown that these equations can
be reduced to a system of matrix Riccati equations.
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Introduction

A system of ordinary differential equations (ODEs) has a superposition formula if it is possible
to express any solution as a function of some particular solutions and arbitrary constants. More
than 100 years ago Lie proved that such systems of equations correspond to finite-dimensional
subalgebras in the algebra of vector fields in C

N or R
N . Thus, an ODE with superposition

formula can be associated with any action of a Lie group G on a manifold M .
The ODEs with superposition formulae appear in soliton theory as Bäcklund

transformations, usually (but not always) as matrix Riccati equations. Matrix Riccati equations
occur in many other applications, e.g. in optimal control theory, diffusion problems, etc [9].
Thus, we may hope to find applications of our generalized matrix Riccati equation in these
areas.

We consider the case when G = SL(n) and M is a homogeneous space SL(n)/P , where
P is a parabolic subgroup of SL(n). The papers [1–3] deal with the case of a primitive action
of Lie groups, which corresponds to maximal parabolic subgroups. Here we consider the case
of a non-primitive action. This case was investigated for some particular choices of P in the
paper [4].

Our goal is to construct explicitly the corresponding ODE for an arbitrary parabolic
subgroup P and show that the solving of this equation can be reduced to the solving of a
matrix Riccati equation.
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1. Ordinary differential equations with superposition formulae

Let us consider a first-order ODE
d

dt
�y = f (�y, t) (1)

where �y ∈ C
N or R

N . We shall say that this equation has a superposition formula if the general
solution �y(t) can be expressed as a function of a finite number m of particular solutions and
N free constants

�y(t) = F(�y1(t), . . . , �ym, c1, . . . , cN) (2)

where �yi(t), i = 1, . . . , m, are particular solutions of (1) and ci, i = 1, . . . , N , are arbitrary
constants.

Lie [5] proved the following theorem.

Theorem 1 (Lie). Equation (1) allows a superposition formula if and only if the function f
has the form

f (�y, t) =
r∑
k=1

Zk(t)�ξk(�y)

where the vector functions �ξk(�y) are such that vector fields

Xk =
N∑
µ=1

ξ
µ

k (�y)∂yµ

generate a finite-dimensional Lie subalgebra h of the algebra of vector fields on C
N or R

N ,
i.e.

[Xk,Xl] =
r∑
j=1

CkljXj .

If we have an action of a Lie group G on a manifold M then we have an induced
homomorphism from an Lie algebra g to an algebra of vector fields on M . Thus, in this
situation we obtain an ODE with superposition formulae.

Let us consider the case whenG = SL(n) andM is a homogeneous spaceSL(n)/P , where
P is any parabolic subgroup of SL(n). We recall that a parabolic subgroup is any subgroup
containing the Borel subgroup, i.e. the maximal solvable subgroup (the Borel subgroup of a
semisimple complex Lie group is unique, up to conjugacy).

Our goal is to construct explicitly the corresponding ODE and show that the solving of
this equation can be reduced to the solving of a matrix Riccati equation.

2. Explicit construction of the ODE

A parabolic subgroup P ⊂ SL(n) corresponds to an ordered set n1, . . . , nk of fixed positive
integers such that n = ∑k

i=1 ni , since the subgroup P can always be realized by matrices of
the form 


P11 P12 · · · P1k

0 P22 · · · P2k
...

. . .
...

0 0 · · · Pkk




where each Pij is a matrix ni × nj .



Generalized matrix Riccati equations with superposition formulae 611

Consider a homogeneous space SL(n)/P and the canonical action of SL(n) on SL(n)/P

g1 · gP = g1gP.

We have to find a suitable coordinate system on the space SL(n)/P . We will construct
natural coordinates in the biggest Schubert cell.

Consider a set M ⊂ SL(n) of matrices
A11 · · · A1k

...
. . .

...

Ak1 · · · Akk




such that Aij is an ni × nj matrix and

|A11 | �= 0

∣∣∣∣A11 A12

A21 A22

∣∣∣∣ �= 0, . . . ,

∣∣∣∣∣∣
A11 · · · A1k
...

. . .
...

Ak1 · · · Akk

∣∣∣∣∣∣ �= 0. (3)

Lemma 1. For any A ∈ M there exists a unique B ∈ P such that AB has the form

I1 0 · · · 0

I2 · · · 0
. . .

...

* Ik




where Ii is the ni × ni identity matrix.

Proof. The proof is an elementary corollary of the conditions (3); it can be found in [6]. �
One can easily verify that for any B ∈ P

M · B = M.

Therefore M is a union of cosets of P . It follows from lemma 1 that in each coset in M there
is a unique element of the form


I1 0 · · · 0

K21
. . .

...
...

. . . 0
Kk1 · · · Kk,k−1 Ik


 (4)

where Kij is an ni × nj matrix. It is well known that the image p(M) by the canonical
projection p : SL(n) −→ SL(n)/P is diffeomorphic to a Euclidean space (this is a so-called
generalized Schubert cell; see, e.g., [7]).

As coordinates of a point x ∈ p(M) we can choose elements of the matrices
K21,K31,K32, . . . , Kk,k−1 of the unique matrix K of the form (4) in the coset of P
corresponding to the point x ∈ p(M).

We shall say that a matrixK of the form (4) is a coordinate matrix. ByK(x) we denote a
coordinate matrix corresponding to x ∈ p(M). In fact, the coordinates of x are the elements
of Kij (i > j � 1).

Now let us consider a group action. Consider a point x ∈ SL(n)/P and the corresponding
coordinates K(x). After multiplication by g ∈ SL(n) we obtain gK(x). But this matrix is
not, in general, a matrix of the form (4), so it is necessary to multiply gK(x) on the right by an
appropriate matrix B ∈ P . Thus, K(gx) = gK(x)B, where B depends on both g and K(x).
This procedure is quite implicit. Nevertheless, we can obtain an explicit answer (this is done
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in [6]), but really we do not need it since we are interested in the corresponding homomorphism
of algebras. Let us find this homomorphism.

Consider a path g(t) ∈ SL(n) such that g(0) = e, d
dt g(t)|t=0 = X for some X ∈ sl(n).

Thus, for an elementX of sl(n)we obtain a vector field X̃ = d
dt K(gx)|t=0 (we use identification

of a vector space and its tangent space in a point to shorten our notation). Thus, we obtain a
vector field

X̃(x) = d

dt
K(gx)

∣∣∣∣
t=0

= d

dt
g(t)

∣∣∣∣
t=0

(K(x)B(t))|t=0 + (g(t)K(x))|t=0
d

dt
B(t)

∣∣∣∣
t=0

= XK(x) +K(x)B ′

where B ′ = d
dt B(t)|t=0. The matrix B was defined by the condition that gK(x)B has the

form (4), so B ′ is defined by the condition that X̃(x) = XK(x) +K(x)B ′ has the form
 0 · · · 0

. . .
...

* 0


 (5)

where a 0 in the position i, j is an ni × nj matrix.
After this we can construct our ODE following a general procedure. Thus, for a pathX(t)

in a Lie algebra sl(n) we obtain an ODE with superposition formula

d

dt
K(x) = X̃(x, t).

We can find this ODE explicitly. For convenience we will split the matrix K(x) into its
submatrices as in (4) and we will split the matrix X ∈ sl(n) into its submatrices

X =

X11 · · · X1,k

...
...

Xk1 · · · Xkk




where Xij is an ni × nj matrix.

Theorem 2. The ODE corresponding to a homogeneous space SL(n)/P is given by the
following formula:

d

dt

(
Ki+1,i

· · ·
Kk,i

)
=
(
Xi+1,i

· · ·
Xk,i

)
+


Xi+1,i+1 · · · Xi+1,k

...
...

Xk,i+1 · · · Xk,k


(Ki+1,i

· · ·
Kk,i

)

−

Ki+1,1 · · · Ki+1,i

...
...

Kk,1 · · · Kk,i





i−1∑
β=0

(−1)β




0 0 · · · 0

K21
. . .

. . .
...

...
. . . 0

Ki1 · · · Ki,i−1 0



β


×

(X1,i

· · ·
Xi,i

)
+


X1,i+1 · · · X1,k

...
...

Xi,i+1 · · · Xi,k


(Ki+1,i

· · ·
Kk,i

) (6)

where i = 1, . . . , k − 1. We use the standard convention that, for a square matrix A, zero
power A0 is equal to the identity matrix.
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Proof. From the formula X̃ = XK(x) +K(x)B ′ we obtain the following formula:

d

dt

(
Ki+1,i

· · ·
Kk,i

)
=
(
Xi+1,i

· · ·
Xk,i

)
+


Xi+1,i+1 · · · Xi+1,k

...
...

Xk,i+1 · · · Xk,k



(
Ki+1,i

· · ·
Kk,i

)

+


Ki+1,1 · · · Ki+1,i

...
...

Kk,1 · · · Kk,i




B

′
1i
...

B ′
ii


 (7)

where the B ′
ij are submatrices of B ′, defined in the same way as the submatrices Xij of X.

Next, let us find the matricesB ′
ij . They are defined by the condition that X̃ has the form (5).

It is easy to rewrite this condition as a system of equations


X1i

...

Xii


 +


X1,i+1 · · · X1k

...
...

Xi,i+1 · · · Xi,k




Ki+1,i

...

Kk,i


 +




I 0 · · · 0

K21
. . .

. . .
...

...
. . . 0

Ki1 · · · Ki,i−1 I




B

′
i1
...

B ′
ii


 = 0

where i = 1, . . . , k. It is well known that if A is a nilpotent matrix then

I +
∞∑
i=1

(−1)iAi

is the inverse matrix for I + A. Thus, we can solve the system of equations for B ′
ij and we

obtain the formulae


B

′
i1
...

B ′
ii


 = −



i−1∑
β=0

(−1)β




0 0 · · · 0

K21
. . .

. . .
...

...
. . . 0

Ki1 · · · Ki,i−1 0



β


×

(X1,i

· · ·
Xi,i

)
+


X1,i+1 · · · X1,k

...
...

Xi,i+1 · · · Xi,k


(Ki+1,i

· · ·
Kk,i

) .
It is sufficient to substitute these formulae in (7) to prove the theorem. �

3. Relation with the matrix Riccati equation

Let us recall that a matrix Riccati equation is an equation of the form

d

dt
W(t) = A(t) + B(t)W(t) +W(t)C(t) +W(t)D(t)W(t) (8)

where A, B, C, D and W are matrices of appropriate sizes. The matrix Riccati equation
is an equation with a superposition formula; it was studied in the papers [3, 8], where the
superposition formulae were found.

We now want to prove the conjecture from the paper [6] that we can represent our ODE
related to SL(n)/P as a list of differential equations such that the first equation is a matrix
Riccati equation and the others are also matrix Riccati equations but with coefficients depending
on the solutions of the previous equations.
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We will prove this conjecture using theorem 2. Indeed, the equation (6) for i = 1 is a
matrix Riccati equation

d

dt

(
K21

· · ·
Kk1

)
=
(
X21

· · ·
Xk1

)
+


X22 · · · X2k

...
...

Xk2 · · · Xk,k



(
K21

· · ·
Kk1

)

−

K21

...

Kk1


 (X11 )−


K21

...

Kk1


 (X12 · · · X1k )

(
K21

· · ·
Kk1

)
.

Let us now consider the equation (6) for i > 1. We can rewrite it in the following form:

d

dt

(
Ki+1,i

· · ·
Kk,i

)
= A + B

(
Ki+1,i

· · ·
Kk,i

)
+

(
Ki+1,i

· · ·
Kk,i

)
C +

(
Ki+1,i

· · ·
Kk,i

)
D

(
Ki+1,i

· · ·
Kk,i

)
(9)

where

A =
(
Xi+1,i

· · ·
Xk,i

)
−

Ki+1,1 · · · Ki+1,i−1

...
...

Kk,1 · · · Kk,i−1


Q1

(
X1,i

· · ·
Xi,i

)

B =

Xi+1,i+1 · · · Xi+1,k

...
...

Xk,i+1 · · · Xk,k


−


Ki+1,1 · · · Ki+1,i−1

...
...

Kk,1 · · · Kk,i−1


Q1


X1,i+1 · · · X1k

...
...

Xi,i+1 · · · Xik




C = −Q2

(
X1i

· · ·
Xii

)
D = −Q2


X1,i+1 · · · X1k

...
...

Xi,i+1 · · · Xik




Q1 =
i−2∑
β=0

(−1)β




0 0 · · · 0

K21
. . .

. . .
...

...
. . . 0

Ki−1,1 · · · Ki−1,i−2 0



β

Q2 =
i−1∑
β=0

(−1)β




0 0 · · · 0

K21
. . .

. . .
...

...
. . . 0

Ki1 · · · Ki,i−1 0



β

.

We see that equation (9) is a matrix Riccati equation (8) for

W =
(
Ki+1,i

· · ·
Kki

)

with coefficients A,B,C,D depending on Kmn with n < i, which ends the proof of our
conjecture.

It should be remarked that the initial equation was related to SL(n), but the obtained
matrix Riccati equations are generally related to GL(n).

Thus, we obtain that the problem of solving the ODE (6) can be reduced to the problem
of solving a sequence of matrix Riccati equations. We can also reduce the problem of finding
an explicit superposition formula for the equation (6) to the problem of finding an explicit
superposition formula for a matrix Riccati equation.
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